pandas loop through rows

96

pandas loop through rows -

for index, row in df.iterrows():
    print(row['c1'], row['c2'])

Output: 
   10 100
   11 110
   12 120

iterate over rows dataframe -

df = pd.DataFrame([{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}])
for index, row in df.iterrows():
    print(row['c1'], row['c2'])

How to iterate over rows in a DataFrame in Pandas -

import pandas as pd

df = pd.DataFrame({'c1': [10, 11, 12], 'c2': [100, 110, 120]})
df = df.reset_index()  # make sure indexes pair with number of rows
for index, row in df.iterrows():
    print(row['c1'], row['c2'])

pandas iterate rows -

import pandas as pd
import numpy as np

df = pd.DataFrame({'c1': [10, 11, 12], 'c2': [100, 110, 120]})

for index, row in df.iterrows():
    print(row['c1'], row['c2'])

pandas iteration -

df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]},
...                   index=['dog', 'hawk'])
>>> df
      num_legs  num_wings
dog          4          0
hawk         2          2
>>> for row in df.itertuples():
...     print(row)
...
Pandas(Index='dog', num_legs=4, num_wings=0)
Pandas(Index='hawk', num_legs=2, num_wings=2)

iterrows pandas -

>>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])
>>> row = next(df.iterrows())[1]
>>> row
int      1.0
float    1.5
Name: 0, dtype: float64
>>> print(row['int'].dtype)
float64
>>> print(df['int'].dtype)
int64

Comments

Submit
0 Comments